

Rogowski probe for measuring hf common mode currents in VSDs

PEM has developed a flexible, clip-around, current probe to measure high frequency common mode currents which flow around a motor drive to ground via the bearings in large AC drive systems.

Common mode currents - the problem:

Variable Speed Drives (VSDs) used to control AC motors can produce large high frequency PWM voltages that can capacitively couple to the machine shaft. The voltages on the shaft can be sufficient to cause arcing currents to flow through the motor bearings to ground.

The discharging currents can cause heating and even melting of the surface of the bearing raceways. The damage caused by bearing currents can lead to premature failure of the motor drive as well and costly maintenance and down time.

CMC - an important tool for engineers:

The CMC is an important tool to identify the presence and severity of common mode currents in large motor drives. It is designed for use by experienced personnel with knowledge of AC drive systems. Once identified, the CMC will give an engineer a reference measurement which can be used to evaluate the effectiveness of steps taken to mitigate against bearing currents.

The probe is a modified version of our industry leading CWT range of Rogowski current sensors.

The CMC can also be used for in a variety of other applications where small, high frequency currents need to be measured.

The customised probe features:

- An electrostatically screened Rogowski coill. The screen attenuates the effects of unwanted interference due to capacitive coupling from local voltage sources
- A low frequency (-3dB) bandwidth to attenuate large fundamental power frequency currents and magnetic fields. This significantly improves the SNR for measurement of high frequency bearing currents
- A high frequency (-3 dB) bandwidth of $\geq 10 \mathrm{MHz}$ for coil circumferences up to 1 m
- A wide range of Rogowski coil sizes suitable for even the largest machine shafts

Power Electronic Measurements
Gloucester House, 162 Wellington Street, Long Eaton Nottingham. NG10 4HS United Kingdom
T +44 (0) 1159469657.
F +44 (0) 1159468515.
E info@pemuk.com
W www.pemuk.com
EMAIL: sales@gmw.com WEB: www.gmw.com

Model	Sensitivity (mV/A)	Peak current (A)	$\begin{gathered} \text { Noise } \\ \max \\ (m \vee p-p) \end{gathered}$	LF (-3dB) bandwidth (kHz)	$\begin{gathered} \text { Typical LF } \\ \text { (<1\%) } \\ \text { bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	Peak di/dt (kA/ $\mu \mathrm{s}$)	HF (-3dB) bandwidth (MHz) Coil length 1000 mm
CMC015	200.0	37.5	4.0	19.0	50.0	4.0	11.0
CMC03	100.0	75.0	4.0	6.0	15.0	8.0	13.0
CMC06	50.0	150.0	4.0	1.9	5.0	16.0	14.0

Output	$\pm 7.5 \mathrm{~V}$ peak corresponding to 'Peak Current' into $>100 \mathrm{k} \Omega$ (e.g. $\mathrm{DC} 1 \mathrm{M} \Omega$ oscilloscope)
Accuracy	Variation with conductor position in the coil typically $\pm 3 \%$ of reading (for a $5 \mathrm{~cm}^{2}$ conductor) Linearity (with current magnitude) 0.05% of reading
Calibration	Calibrated to $\pm 0.5 \%$ reading with conductor central in the coil loop
DC offset	$\pm 3 \mathrm{mV}$ maximum at $25^{\circ} \mathrm{C}$
Temperature	Coil and cable $-20^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$. Integrator 0 to $+40^{\circ} \mathrm{C}$
di/dt ratings	These are 'absolute maximum di/dt ratings' and values must not be exceeded: Absolute max. peak di/dt: $70 \mathrm{kA} / \mu \mathrm{s}$ Absolute max. rms di/dt: $1.5 \mathrm{kA} / \mu \mathrm{s}$
Coil voltage	10 kV peak Safe peak working voltage to earth. Rating established by a $15 \mathrm{kVrms}, 50 \mathrm{~Hz}, 60 \mathrm{sec}$ flash test. Information about continuous use of the coils at high voltage can be obtained from PEM.

Key features

(1) Coil length (circumference)

$500 \mathrm{~mm}, 700 \mathrm{~mm}, 1000 \mathrm{~mm}$ - longer coils available on request
(2) Coil cross-section (thickness)
$8.5 \mathrm{~mm} \max$ (14 mm with removeable silicone sleeve - only for mechanical protection)

(3) Cable length

2.5 m and 4 m as standard (connecting cable coil to integrator)

- longer cables available on request.

(C) Battery options

B-Standard: $4 \times \mathrm{AA} 1.5 \mathrm{~V}$ alkali batteries. Lifetime typically 25 hours
R-Rechargeable: $4 \times \mathrm{AA} 1.2 \mathrm{~V} \mathrm{NiMH}$ batteries. Lifetime
typically 10 hours. External adaptor recharges
batteries and powers unit.
(3) Socket for external power adaptor (1.3 mm diameter)
(adaptor available from PEM as an option)
(6) Electronics enclosure

Dimensions $\mathrm{H}=183 \mathrm{~mm}, \mathrm{~W}=93 \mathrm{~mm}, \mathrm{D}=32 \mathrm{~mm}$

(1) Output BNC socket

Supplied with 0.5 m BNC:BNC cable.

Performance

Typical performance characteristics

Low Frequency

The low frequency bandwidth is set to attenuate any large fundamental frequency currents and magnetic fields. The CMC06 integrator has a gain of typically -90 dB at 50 Hz , this means that if there is a $100 \mathrm{Arms}, 50 \mathrm{~Hz}$ current passing through the coil the output of the CMC will be $<0.2 \mathrm{mV}$ rms.

Typical low frequency amplitude response

High Frequency

The high frequency bandwidth of the CMC is determinded by the coil length, the cable length and the integrator design. The high frequency bandwidth for each model is quoted for a 2.5 m cable and a 1000 mm coil in the specification table.

Typical high frequency response --
Model CMC06 -- 50mV/A
Showing the variation of HF performance with coil length, 500 mm coil up to 5000 mm coil

Noise

The low noise integrator design allows better measurement accuracy of high frequency currents and enables a wide dynamic measurement range.

Typical noise - Model CMC03
Ch1 - CMC03/B/2.5/1000
(Peak current 75A, Sensitivity $100 \mathrm{mV} / \mathrm{A}$)
Timebase 2ms/div

Distributed By:
955 Industrial Road, San Carlos, CA, 94070 USA
GMW Associates

Performance

Delay

The trace shows the CMC03 measuring a 2 MHz sinusoidal current source compared with a coaxial shunt measurement of the same current. There is a delay between the actual current and the output of the CMC which is predictable and is determined by the coil and cable length as well as the integrator design. The predicted delay for the CMC03B/2.5/1000 is 35 ns .

2MHz damped sinusoidal current 16Apk

 —— Ch1- CMC03/B/2.5/1000 (Peak current 75A, Sensitivity $100 \mathrm{mV} / \mathrm{A}$)
- Ch2
- Co-ax shunt 2GHz Timebase 200ns/div

Generating the order code

Type	1	Power supply	/	Cable length (m)	1	Coil circumference (mm)
e.g. CMC06 - $50 \mathrm{mV} / \mathrm{A}$ battery supply, 2.5 m cable from coil to integrator, 1000 mm circumference coil						
CMC06	1	B	/	2.5	/	1000

If you have any queries regarding the CMC or require specifications outside our standard ranges please do not hesitate to contact us.

WWW.pemuk.com
March 2018

Distributed By:

GMW Associates

955 Industrial Road, San Carlos, CA, 94070 USA
PHONE: +1 650-802-8292
FAX: +1 650-802-8298
EMAIL: sales@gmw.com
WEB: www.gmw.com

Gloucester House, 162 Wellington Street, Long Eaton Nottingham. NG10 4HS United Kingdom
T +44 (0) 1159469657.
F +44 (0) 1159468515.
E info@pemuk.com
W www.pemuk.com

