IN-LINE MECHANICAL PRODUCTION TEST EQUIPMENT FOR CRACK DETECTION IN PERMANENT MAGNETS AND MAGNET BLANKS

S. Spasic (SENIS), Yu Miao (MAS-Intelligent Technology), Zhen Xu (GMW), Ian Walker (GMW)

MAGNETICS 2020

CRACKS CAUSE COSTS!

- Magnets with cracks or defects on surface or inside inhomogeneities can break during magnetizing, processing, assembly or in operation.
- Crack induced failure inside the magnet system can be dangerous, e.g. high continuous torque motor
- It might be costly to replace the complete assembled magnet system, such as motor/rotor, sensor systems
- Detection of cracks during the production process can improves the yield and reduces the maintenance costs.

HOW DO CRACKS LOOK LIKE?

EDDY CURRENT - CRACK DETECTION

- Alternating current injected into a coil creates a magnetic field.
- When the coil is placed over a conductive part, opposed alternating currents are generated.
- Defects in the part disturb the path of the eddy currents.
- This disturbance can be measured by pickup coils, either through single coil or differential pick coils.

INFLUENCING FACTORS

- Conductivity of the target plate
- Permeability of the target plate
- Temperature of the target plate
- Coil geometry
- Operating frequency (excitation)

Probe Design and Simulation

 $J=J_{
m S}~e^{-(1+j)d/\delta}$

 $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$

d: Distance relative to sample surface J_s : Surface density

Properties if NdFeB: Conductivity: 6.67E+05 S/m Relative permeability: 1.05

SEN

GMW

Simulation Example

Sample Size: 100mm*40mm

 Parameters 	;		
** Name	Expression	Value	Description
a2	6.15[mm]	0.00615 m	Inner Radius of Coil
al	12.4[mm]	0.0124 m	Outer Radius of Coil
b	6.15[mm]	0.00615 m	Length of Coil
N	3790	3790	Number of Turns
I	0.88[mm]	8.8E-4 m	Lift-Off
Sigma_Test	6.67e5[S/m]	6.67E5 S/m	Conductivity of Test Spec
Thickness_Test	6[mm]	0.006 m	Thickness of Test Specim
Height_Defect	3[mm]	0.003 m	Height of Defect
Depth_Defect	12.6[mm]	0.0126 m	Depth of Defect
Width_Defect	0.28[mm]	2.8E-4 m	Width of Defect
Freq	200000[Hz]	2E5 Hz	Frequency
Position	0[mm]	0 m	Initial Position of Coil

& current measurement

& current measurement **GMW**

Crack & No Crack

$$V = -\frac{d\varphi}{dt} = -\frac{d(N \cdot \vec{B} \cdot \vec{S})}{dt} = -N \cdot f \cdot \vec{B} \cdot \vec{S}$$

Sum_two_coils With Crack

Sample Size 100mm*40mm

Current Density Distribution (XY)

Current Density Distribution (YZ)

Position(17)=-4 mm freq(1)=2E5 Hz Arrow Volume: Induced current density

Skin Depth ~ 2mm (Total Sample Thickness 6mm)

GMW

Current Density Distribution (XZ)

SFN

MAPPER + EDDY-CURRENT PROBE

SENIS EDDY-CURRENT PROBES

GMW

NEW PROJECT REQUIREMENTS

- Non-magnetised and epoxy coated magnet blanks of different sizes need to be separated from each other and put on the linear transport system
- Only the edge part of magnet need to be measured (6mm area on all four edges from both sides of the magnet blanks, i.e. length and width)
- The magnet thickness will be measured to adjust the distance (air-gap) between magnets and eddy current probe arrays
- An operator interface software for entering the magnet and test data, such as Article, Date, Op. Name, Lot number...
- GOOD / BAD decision will be made based on a SENIS proprietary algorithm for crack detection
- A calibration software using 5 golden parts to periodical compensate offset
- 100% in-line production test test duration: <7sec per magnet

GM

PARTS FLOW

optical position sensors detect the magnet on the transportation system with encoders

GMW 18

SENIS

tic & current measurement

IMPLEMENTATION

RESULT – CRACK DETECTION

- The contrast reflects the \succ voltage difference between two coils.
- Compared with cracks, magnet edges shows higher color contrast.

10000 12000

10000 12000

Website Senis: <u>http://www.senis.ch/</u> GMW Associates: <u>https://gmw.com/</u>

Email: Sasa Spasic: <u>spasic@senis.ch</u> Zhen Xu: <u>zhen.xu@gmw.com</u>

