


## **HTS CURRENT LEADS**

- With over 15 years in this field, the CryoSaver<sup>™</sup> HTS current leads have demonstrated consistent outstanding performance.
- The CryoSaver<sup>™</sup> family uses High Temperature Superconducting (HTS) tape to create a robust, reliable lead.
- CryoSaver<sup>™</sup> current leads, rated from 150A to more than 2000A, deliver significantly improved performance, with lower heat leak than vapor-cooled leads.

• Applications include MRI, NMR, and beam-line magnets as well as driven (nonpersistent) superconducting magnets.



#### **CryoSaver™ Leads**

Standard CryoSaver<sup>™</sup> leads use a fibreglass composite body to encase the HTS wire for structural integrity. This allows the lead to tolerate a large number of thermal and electrical cycles. Copper end-caps are used for warm and cold end connections.

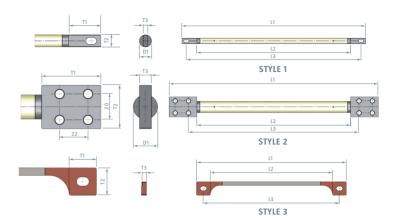
#### **Ballasted Leads**

These incorporate a current shunt in the lead body to protect inductive loads in case of lead quench. Ballasted leads have superior mechanical properties compared with conventional leads, and can tolerate minor misalignment of contact surfaces. Length, terminal design and current capacity can be customized at time of order.

### **Sapphire Heat Sink Kits**

HTS-110 has developed Sapphire Heat Sink Kits for use on all standard leads to optimise the thermal contact between lead and heat sink. We recommend the use of these with all standard current leads.

#### Customisation


Customised CryoSaver<sup>™</sup> current leads can be provided with custom terminals, complex geometry, or alternative dimensions to meet your requirements.

#### **Hermetic Leads**

Designed for service in cryogenic liquid or vapour, CryoSaver<sup>™</sup> hermetic leads incorporate a ceramic break and/or flange to allow passage of the current lead through an intermediate temperature heat shield or vacuum cryostat wall.

| Operating<br>Current | Туре      | Body<br>dia.<br>(mm) | Overall<br>length<br>(mm)<br>L1 | Gap<br>length<br>(mm)<br>L2 | Fixing<br>Centre<br>Distance<br>(mm)<br>L3 | Calculated<br>mechanical limits |             |                 |
|----------------------|-----------|----------------------|---------------------------------|-----------------------------|--------------------------------------------|---------------------------------|-------------|-----------------|
| (at 64K)             |           |                      |                                 |                             |                                            | Comp. (N)                       | Tension (N) | Torsion<br>(Nm) |
| 150 A                | Standard  | 9.5                  | 305                             | 255                         | 290                                        | 200                             | 1500        | 7               |
|                      | Short     | 9.5                  | 170                             | 138                         | 158                                        | -                               | -           | -               |
|                      | Ballasted | 4.5x1.2              | 174                             | 142                         | 158                                        | -                               | -           | -               |
| 250 A                | Standard  | 11.1                 | 305                             | 255                         | 290                                        | 400                             | 2000        | 11              |
|                      | Short     | 12.7                 | 170                             | 138                         | 158                                        | -                               | -           | -               |
|                      | Ballasted | 4.5x2.0              | 174                             | 142                         | 158                                        | -                               | -           | -               |
| 500 A                | Standard  | 14.3                 | 305                             | 255                         | 290                                        | 1100                            | 2500        | 18              |
|                      | Ballasted | 9.0x1.5              | 174                             | 142                         | 158                                        | -                               | -           | -               |
| 1000 A               | Standard  | 19.1                 | 347                             | 255                         | 283                                        | 3400                            | 4000        | 38              |
| 2000 A               | Standard  | 25.4                 | 347                             | 255                         | 283                                        | 8400                            | 5000        | 60              |

Note: electrical performance may be degraded at the estimated mechanical limits.



| σ                                |       |                |               |                   |                   |                                                          |  |
|----------------------------------|-------|----------------|---------------|-------------------|-------------------|----------------------------------------------------------|--|
| Operating<br>Current<br>(at 64K) | Style | Length<br>(mm) | Width<br>(mm) | Thickness<br>(mm) | Hole Size<br>(mm) | Calculated<br>heat leak<br>64K-4.2K<br>(pair) +/-<br>15% |  |
| 150 A                            | 1     | 25             | 8.9           | 3.3               | R2.6x3            | 35mW                                                     |  |
|                                  | 1     | 16             | 7.1           | 6.4               | R1.6x2            | 65mW                                                     |  |
|                                  | 3     | 16             | 16            | 6                 | R2.6x2            | 65mW                                                     |  |
| 250 A                            | 1     | 25             | 9.4           | 6.4               | R2.6x3            | 65mW                                                     |  |
|                                  | 1     | 16             | 11            | 6.4               | R2.2x2            | 130mW                                                    |  |
|                                  | 3     | 16             | 16            | 6                 | R2.6x2            | 125mW                                                    |  |
| 500 A                            | 1     | 25             | 12.8          | 6.4               | R2.6x3            | 135mW                                                    |  |
|                                  | 3     | 16             | 21            | 6                 | R2.6x2            | 235mW                                                    |  |
| 1000 A                           | 2     | 46             | 34            | 9.5               | R3.3              | 285mW                                                    |  |
| 2000 A                           | 2     | 46             | 34            | 12.7              | R3.3              | 560mW                                                    |  |

#### **Benefits**

- » **Low Heat Leak:** The composite conductor consists of HTS filaments in a low thermal conductivity matrix, providing a very high current density and low heat leak through the small cross-section.
- » Field Tolerant: The anisotropic nature of the CryoSaver<sup>™</sup> current leads allows the lead to be positioned in a cryostat such that applied fields are along a favorable axis, an advantage over isotropic bulk materials.
- » **Ease of Integration:** Electrical connection to the copper end caps is easily made, mechanically or by soldering, for low resistance and low Joule heating.
- » Durable & Stable: The HTS conductor exhibits tolerance to strain & thermal cycling superior to other types of HTS leads. CryoSaver<sup>™</sup> leads have superior ability to tolerate and recover from minor cooling system upsets without damage or burnout, as the metal matrix in the conductor slows temperature rise after loss of cooling.



# HTS-110.com