

Coreless Clip-On & Clamp-On Current Probes for Test Stand & In-Vehicle Current Monitoring

GMWAssociates

Presented by:

Ian J. Walker Senior Applications Engineer GMW Associates ian@gmw.com

Overview & Specifications

Coreless Clip-On & Clamp-On Current Probes

Potential Measurement Locations

ITEC2021 – Coreless Clip-On & Clamp-On Current Probes for Test Stand & In-Vehicle Current Monitoring

The potential locations for current measurement in a modern electric or hybrid vehicle are difficult to access.

A Clamp-On Current Probe designed for safe, Hand-Held current measurements is typically large and will not withstand vibration, moisture/ice, or temperature cycling from -40°C to +85°C.

GMW CPC Clip-On DC-AC Current Probes

Current probes with no magnetic core and current ranges from ±250A to ±2000A.

No hysteresis, no damage from primary current overload with recovery to linear operation within 10 μ s of primary current within range. The CPC Current Probe can be used to monitor the "low current" recovery after a high current overload.

27mm Aperture Clip-on Current Probe

Small size enables installation in difficult locations

Specifications: GMW CPC Clip-On DC-AC Current Probes

Signal Output	0±2V
Current Sensitivity	8mV/A to 1mV/A
Current Ranges	±250A, ±500A, ±1000A, ±2000A
Frequency Range	DC to 75kHz (-3dB)
Sensitivity Error	<±1%
Output Change, Magnetic Field	<0.2% of range for 40mT ⁽¹⁾
Response Time	<2µs
Insertion Impedance	<1pH
Operating Temperature	-40°C to +100°C
Moisture Resistance	Sealed, NEMA 5
Aperture	27mm (1.06")
Mass	<30g (1 oz)
Power Supply	3.5V to 5.5V, <85mA, USB Port

(1) A current of 10kA generates a field of 40mT at a radius of 0.05m (~2").

GMW CPCO Clamp-On DC-AC Current Probes

Large aperture Current Probes with no magnetic core and current ranges from $\pm 500A$ to $\pm 16kA$. Suitable for earth moving, marine and aerospace high current applications.

77mm (3.03") or 160mm (6.3") aperture with a full 180° opening short 19mm (0.75") axial length enables installation on cables or bus bars with close spacing.

Small cross-section and sealed enclosure enables long-term, reliable operation in harsh environments.

Specifications: GMW CPCO Clamp-On DC-AC Current Probes

Signal Output Options	5V±5V, 05±5V, 0V±10V, 12mA±8mA, RMS 0-3V
Current Ranges	±500A, ±1kA, ±2kA, ±4kA, ±8kA, ±16kA
Frequency Range	DC to 40kHz (-3dB)
Sensitivity Error	<±1%
Output Change, Magnetic Field	<0.2% of range for 18mT to 267mT (range dependent) ⁽¹⁾
Response Time	<10µs
Insertion Impedance	<1pH
Operating Temperature	-40°C to +85°C
Moisture Resistance	Sealed, NEMA 5
Aperture	77mm (3.03") or 160mm (6.3")
Mass	120g (0.26 lb) or 300g (0.66 lb)
Power Supply	±11V to ±31V, <0.8W

(1) A current of 10kA generates a field of 40mT at a radius of 0.05m (~2").

Test Data

Coreless Clip-On & Clamp-On Current Probes

Recovery from Overload Current – Test Setup

With 4x primary overload current the CPC shows:

- No electrical saturation and the correct sign with no overshoot
- No ringing
- No zero-crossing phase shift after overload
- No damage

Fig 1: CPC ±250A fs with 750Arms Primary Current (yellow trace), or ±1060A. Approx. 4x full scale.

With 4x primary overload current the CPC shows:

- No electrical saturation and the correct sign with no overshoot
- No ringing
- No zero-crossing phase shift after overload
- No damage

Fig 2: CPC ±250A fs as in Fig 1 but with high vertical sensitivity. No measurable zero crossing shift at 5µs/div.

High rejection of external magnetic fields arising from external currents or steel cabinets.

Test arrangement:

- GMW CPCO-4000-77 (±4000A, 77mm aperture)
- External Conductor 1000A at 25mm from surface

Change in Zero Offset:

Position 1: 0.5% full-scale Position 2: 0.52% full-scale Position 3: 0.61% full-scale Position 4: 0.25% full-scale

High rejection of external magnetic fields arising from external currents or steel cabinets.

Test arrangement:

Steel place 100mm x 300mm x 6mm (4" x 12" x $\frac{1}{4}$ ") placed about 12mm (0.5") from the outer surface of the CPCO at four positions. The output signal for a 300Arms, 60Hz was measured.

The change in the output signal was <0.1% of the signal for the steel place in any position.

Signal Output essentially independent of current position within aperture.

The output signal for a CPCO-4000-77 (77mm aperture) is measured for a 60Hz 230Arms current in a 10mm diameter conductor with variations in the measured current as shown.

	Conductor Position	Measured Current (Arms)	Deviation (%)
		230	0.%
		228	-0.9%
		228	-0.9%
		232	0.9%
		233	1.3%
1	1	233	1.3%

High Stability with thermal cycling.

Several different CPC and CPCO models with different current ranges have been temperature cycled for 50 cycles over 70 hours.

The maximum changes observed: Zero Offset: ±0.2% of full-scale Sensitivity: ±0.5%

1 cycle ~ 90 minutes, -40°C to +85°C. Repeated for 50 cycles.

Operating Principle

Coreless Clip-On & Clamp-On Current Probes

Operating Principle: Ampere's Circuital Law

In SI units:

 $\oint_{\mathbf{C}} \mathbf{B} \cdot \mathbf{d} \mathbf{l} = \mu_0 I_{enc}$

B is the magnetic flux density in Tesla.

 μ_0 is the permeability of a vacuum.

I is the current enclosed in Ampere.

Note that the line integral is independent of the position of the current.

<u>Operating Principle:</u> Ampere's Circuital Law

For a circle of radius r enclosing a current I with the current perpendicular to the plane of the circle, **B** is tangential to the circle at all points on the circle and the relationship becomes:

$$B \cdot 2\pi r = \mu_0 I$$

or
$$I = \frac{2\pi r B}{r}$$

Only in the absence of any other currents or magnetic fields can the current be determined by measuring **B** at one point.

Approximating Ampere's Circuital Law with a Summation instead of a Line Integral

For "point" magnetic sensors providing an output signal proportional to \mathbf{B} , the Line Integral can be approximated by a summation:

$$I = \frac{1}{\mu_0} \int \mathbf{B} \cdot d\mathbf{l} \sim \frac{1}{\mu_0} \sum_{r=1}^n C_r \cdot B_r$$

Where B_r is the field component along the tangent to the enclosing line and C_r are constants that can be determined by magnetic modeling.

Approximating Ampere's Circuital Law with a Summation instead of a Line Integral

For a current I' outside the loop:

$$\frac{1}{\mu_0} \int \mathbf{B}' \cdot d\mathbf{l} = 0$$

and
$$\frac{1}{\mu_0} \sum_{r=1}^n C_r \cdot B_r' \sim 0$$

External currents and magnetic fields are rejected by the summation approximation.

US Patents: 9952257, 10690701 European Patent: 2972425

Ampere's Circuital Law applies to any closed line. The CSS-SO DC/AC "Slip-on" Current Probe can measure the current of any shape conductor that can fit within the open U-shape.

Signal Output	0±2V
Current Sensitivity	4mV/A to 0.166mV/A
Current Ranges	±400A, ±1kA, ±2kA, ±4kA, ±8kA, ±12kA
Frequency Range	DC to 1kHz (-3dB)
Sensitivity Error	<±1%
Response Time	<2µs
Insertion Impedance	<1pH
Operating Temperature	-40°C to +85°C
Moisture Resistance	Sealed, NEMA5
Aperture, U-shape	102mm x 30.2mm (4.0" x 1.2")
Mass	<65g (2.3 oz)
Power Supply	3.5V to 5.5V, 150mA, USB Port

ITEC2021 – Coreless Clip-On & Clamp-On Current Probes for Test Stand & In-Vehicle Current Monitoring A U-shape, "Slip-On" Current Sensor with a relatively narrow opening works well.

CSS-SO-xxxx-BP2 **GMWAssociates**

Thank You!

