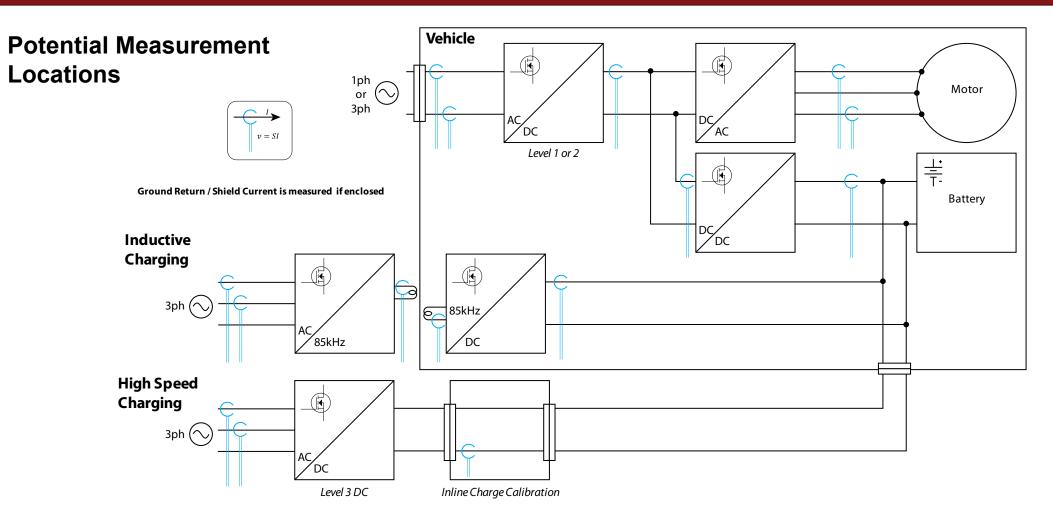
Coreless Clip-On & Clamp-On Current Probes for Test Stand & In-Vehicle Current Monitoring


GMWAssociates

Presented by:

Ian J. Walker Senior Applications Engineer GMW Associates ian@gmw.com

Overview & Specifications

Coreless Clip-On & Clamp-On Current Probes

GMWAssociates

The potential locations for current measurement in a modern electric or hybrid vehicle are difficult to access.

A Clamp-On Current Probe designed for safe, Hand-Held current measurements is typically large and will not withstand vibration, moisture/ice, or temperature cycling from -40°C to +85°C.

GMW CPC Clip-On DC-AC Current Probes

Current probes with no magnetic core and current ranges from ±250A to ±2000A.

No hysteresis, no damage from primary current overload with recovery to linear operation within 10 μ s of primary current within range. The CPC Current Probe can be used to monitor the "low current" recovery after a high current overload.

27mm Aperture Clip-on Current Probe

Small size enables installation in difficult locations

Specifications: GMW CPC Clip-On DC-AC Current Probes

Signal Output	0±2V	
Current Sensitivity	8mV/A to 1mV/A	
Current Ranges	±250A, ±500A, ±1000A, ±2000A	
Frequency Range	DC to 75kHz (-3dB)	
Sensitivity Error	<±1%	
Output Change, Magnetic Field	<0.2% of range for 40mT ⁽¹⁾	
Response Time	<2µs	
Insertion Impedance	<1pH	
Operating Temperature	-40°C to +100°C	
Moisture Resistance	Sealed, NEMA 5	
Aperture	27mm (1.06")	
Mass	<30g (1 oz)	
Power Supply	3.5V to 5.5V, <85mA, USB Port	

(1) A current of 10kA generates a field of 40mT at a radius of 0.05m (~2").

GMW CPCO Clamp-On DC-AC Current Probes

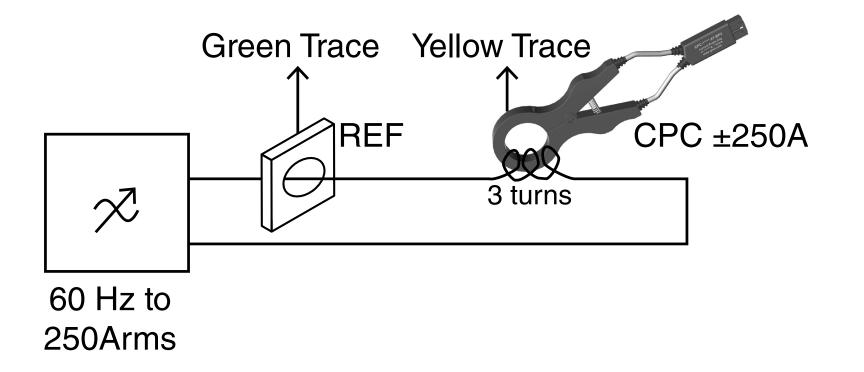
Large aperture Current Probes with no magnetic core and current ranges from $\pm 500A$ to $\pm 16kA$. Suitable for earth moving, marine and aerospace high current applications.

77mm (3.03") or 160mm (6.3") aperture with a full 180° opening short 19mm (0.75") axial length enables installation on cables or bus bars with close spacing.

Small cross-section and sealed enclosure enables long-term, reliable operation in harsh environments.

Specifications: GMW CPCO Clamp-On DC-AC Current Probes

Signal Output Options	5V±5V, 05±5V, 0V±10V, 12mA±8mA, RMS 0-3V
Current Ranges	±500A, ±1kA, ±2kA, ±4kA, ±8kA, ±16kA
Frequency Range	DC to 40kHz (-3dB)
Sensitivity Error	<±1%
Output Change, Magnetic Field	<0.2% of range for 18mT to 267mT (range dependent) ⁽¹⁾
Response Time	<10µs
Insertion Impedance	<1pH
Operating Temperature	-40°C to +85°C
Moisture Resistance	Sealed, NEMA 5
Aperture	77mm (3.03") or 160mm (6.3")
Mass	120g (0.26 lb) or 300g (0.66 lb)
Power Supply	±11V to ±31V, <0.8W


(1) A current of 10kA generates a field of 40mT at a radius of 0.05m (~2").

Test Data

Coreless Clip-On & Clamp-On Current Probes

Recovery from Overload Current – Test Setup

With 4x primary overload current the CPC shows:

- No electrical saturation and the correct sign with no overshoot
- No ringing
- No zero-crossing phase shift after overload
- No damage

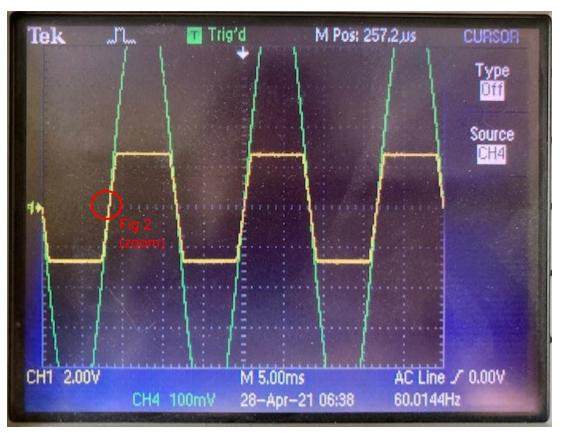
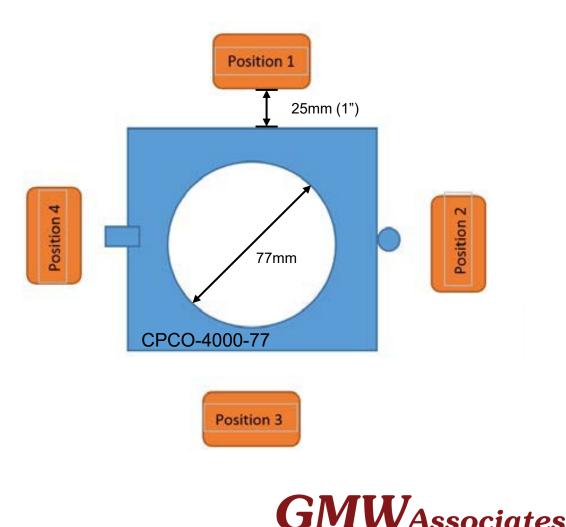


Fig 1: CPC ±250A fs with 750Arms Primary Current (yellow trace), or ±1060A. Approx. 4x full scale.

With 4x primary overload current the CPC shows:

- No electrical saturation and the correct sign with no overshoot
- No ringing
- No zero-crossing phase shift after overload
- No damage

Fig 2: CPC ±250A fs as in Fig 1 but with high vertical sensitivity. No measurable zero crossing shift at 5µs/div.

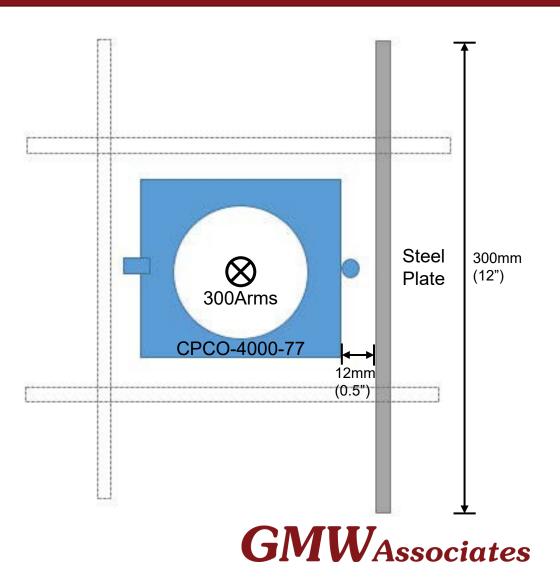

High rejection of external magnetic fields arising from external currents or steel cabinets.

Test arrangement:

- GMW CPCO-4000-77 (±4000A, 77mm aperture)
- External Conductor 1000A at 25mm from surface

Change in Zero Offset:

Position 1: 0.5% full-scale Position 2: 0.52% full-scale Position 3: 0.61% full-scale Position 4: 0.25% full-scale



High rejection of external magnetic fields arising from external currents or steel cabinets.

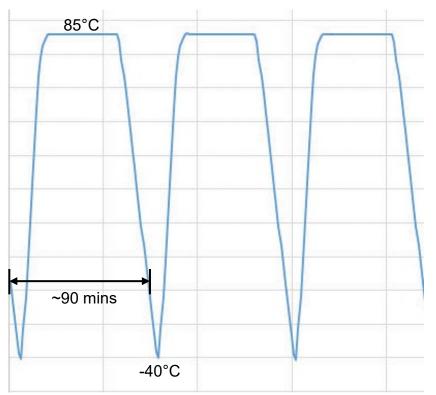
Test arrangement:

Steel place 100mm x 300mm x 6mm (4" x 12" x $\frac{1}{4}$ ") placed about 12mm (0.5") from the outer surface of the CPCO at four positions. The output signal for a 300Arms, 60Hz was measured.

The change in the output signal was <0.1% of the signal for the steel place in any position.

Signal Output essentially independent of current position within aperture.

The output signal for a CPCO-4000-77 (77mm aperture) is measured for a 60Hz 230Arms current in a 10mm diameter conductor with variations in the measured current as shown.


	Conductor Position	Measured Current (Arms)	Deviation (%)
		230	0.%
		228	-0.9%
		228	-0.9%
		232	0.9%
		233	1.3%
-		233	1.3%

High Stability with thermal cycling.

Several different CPC and CPCO models with different current ranges have been temperature cycled for 50 cycles over 70 hours.

The maximum changes observed: Zero Offset: ±0.2% of full-scale Sensitivity: ±0.5%

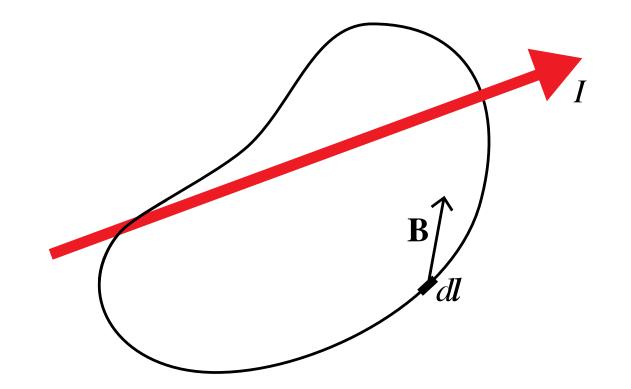
1 cycle ~ 90 minutes, -40°C to +85°C. Repeated for 50 cycles.

Operating Principle

Coreless Clip-On & Clamp-On Current Probes

Operating Principle: Ampere's Circuital Law

In SI units:


 $\oint_{\mathbf{C}} \mathbf{B} \cdot \mathbf{d} \mathbf{l} = \mu_0 I_{enc}$

B is the magnetic flux density in Tesla.

 μ_0 is the permeability of a vacuum.

I is the current enclosed in Ampere.

Note that the line integral is independent of the position of the current.

Operating Principle: Ampere's Circuital Law

For a circle of radius r enclosing a current I with the current perpendicular to the plane of the circle, **B** is tangential to the circle at all points on the circle and the relationship becomes:

$$B \cdot 2\pi r = \mu_0 I$$

or
$$I = \frac{2\pi r B}{r}$$

Only in the absence of any other currents or magnetic fields can the current be determined by measuring **B** at one point.

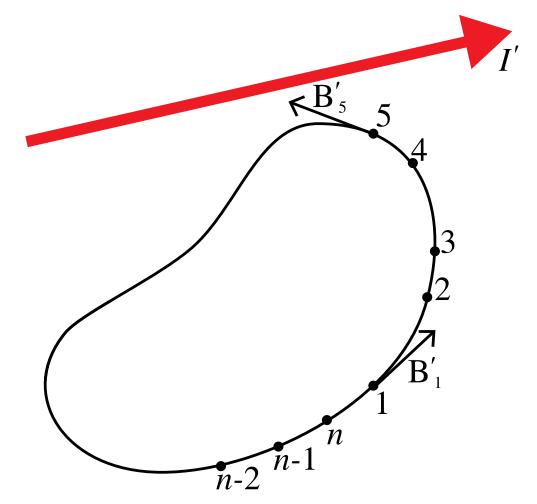
Approximating Ampere's Circuital Law with a Summation instead of a Line Integral

For "point" magnetic sensors providing an output signal proportional to \mathbf{B} , the Line Integral can be approximated by a summation:

$$I = \frac{1}{\mu_0} \int \mathbf{B} \cdot d\mathbf{l} \sim \frac{1}{\mu_0} \sum_{r=1}^n C_r \cdot B_r$$

Where B_r is the field component along the tangent to the enclosing line and C_r are constants that can be determined by magnetic modeling. n-2

Approximating Ampere's Circuital Law with a Summation instead of a Line Integral


For a current I' outside the loop:

$$\frac{1}{\mu_0} \int \mathbf{B}' \cdot d\mathbf{l} = 0$$

and
$$\frac{1}{\mu_0} \sum_{r=1}^n C_r \cdot B_r' \sim 0$$

External currents and magnetic fields are rejected by the summation approximation.

US Patents: 9952257, 10690701 European Patent: 2972425

Coreless Clip-On & Clamp-On Current Probes for Test Stand & In-Vehicle Current Monitoring

Ampere's Circuital Law applies to any closed line. The CSS-SO DC/AC "Slip-on" Current Probe can measure the current of any shape conductor that can fit within the open U-shape.

Signal Output	0±2V
Current Sensitivity	4mV/A to 0.166mV/A
Current Ranges	±400A, ±1kA, ±2kA, ±4kA, ±8kA, ±12kA
Frequency Range	DC to 1kHz (-3dB)
Sensitivity Error	<±1%
Response Time	<2µs
Insertion Impedance	<1pH
Operating Temperature	-40°C to +85°C
Moisture Resistance	Sealed, NEMA5
Aperture, U-shape	102mm x 30.2mm (4.0" x 1.2")
Mass	<65g (2.3 oz)
Power Supply	3.5V to 5.5V, 150mA, USB Port

Coreless Clip-On & Clamp-On Current Probes for Test Stand & In-Vehicle Current Monitoring

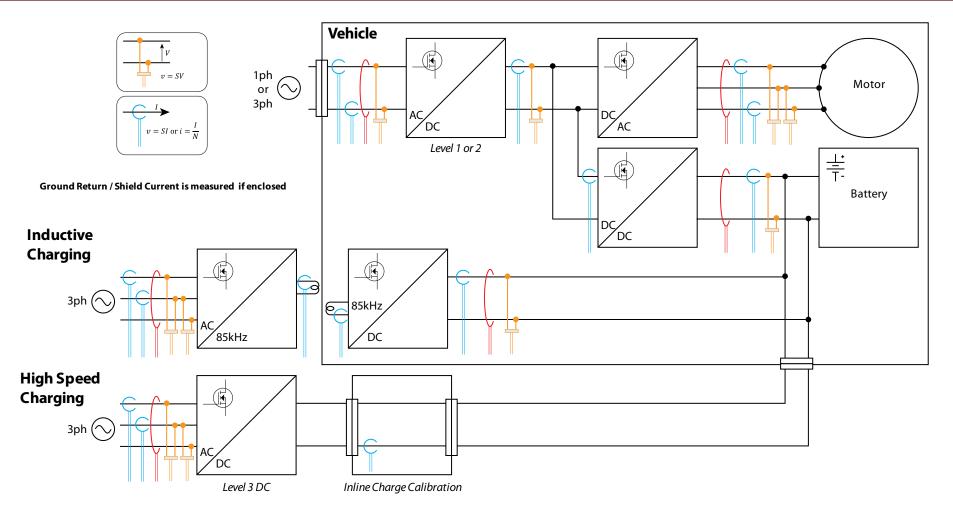
A U-shape, "Slip-On" Current Sensor with a relatively narrow opening works well.

CSS-SO-xxxx-BP2 **GMWAssociates**

Thank You!

Current Measurement for Electric Vehicle Charger Test

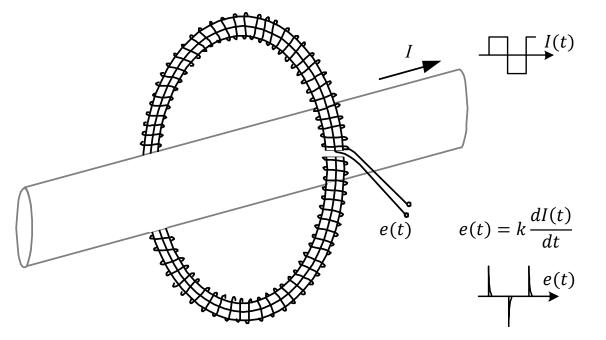
GMWAssociates


Presented by:

Ben Hartzell VP Marketing GMW Associates ben@gmw.com

Overview

Current Probe Connections in Electric Vehicle Chargers

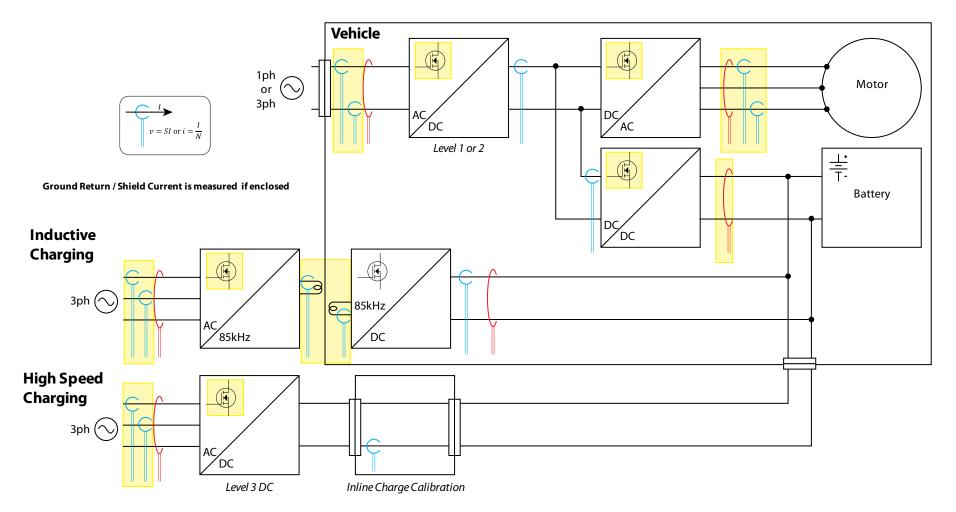

Current Probe Connections in Electric Vehicle Chargers

PEM Rogowski Coils

Flexible, Clip-around AC Current Probes with Analog Integrator

PEM Flexible, Clip-around AC Current Probes Rogowski Coil with Analog Integrator

Current Sensitivity (S): 200mV/A to 0.02mV/A Current Range: ±30A to ±300kA 0.03Hz to 50MHz Frequency Range: Amplitude Accuracy: ~±1% Phase Shift: < 1°at mid-range Insertion Impedance: <1pH Operating Temp (coil): -20°C to +100°C (can be wider range) -150ppm/°C to -200ppm/°C Sensitivity Temp Coeff:


Rogowski Coil with no magnetic core

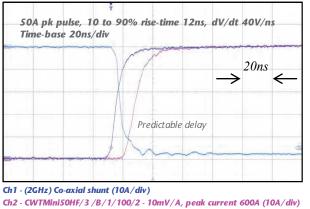
After Analog Integration:
$$V(t) = \int k \cdot \frac{dI(t)}{dt} \cdot dt = k \cdot k'I(t) = S \cdot I(t)$$

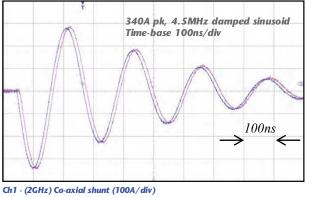
 $S = Sensitivity$

Source: PEM


GMWAssociates

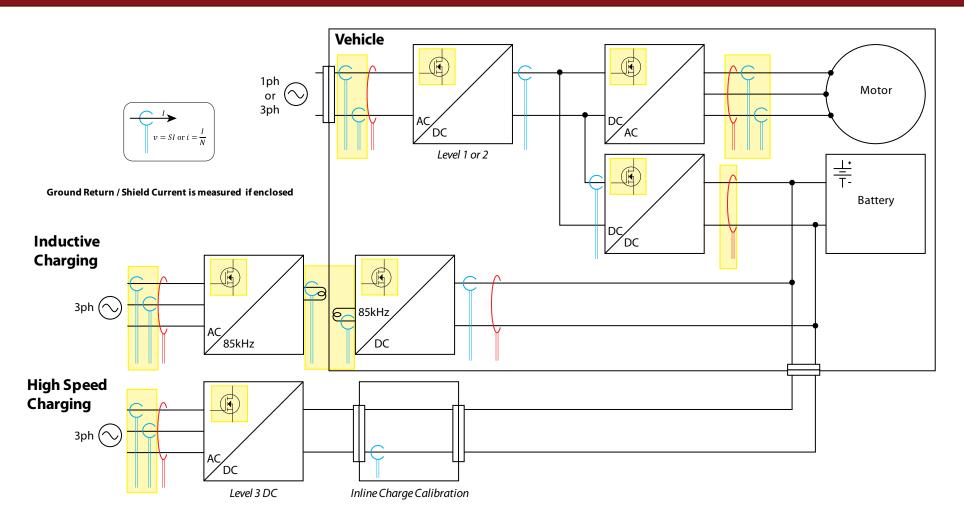
Current Probe Connections in Electric Vehicle Chargers -PEM CWT Rogowski Coils




GMWAssociates

PEM Current Probes - CWT Mini50HF

Current Sensitivity (S):	10mV/A	5mV/A
Current Range:	±0.6kA	±1.2kA
Noise (primary current):	1.5Ар-р	ЗАр-р
Frequency Range (LF):	12Hz	6Hz
(HF):	50MHz	50MHz
Coil Lengths:	100mm or 200mm	
Coil Cross-section:	3.5mm	
Current Sensitivity (S):	10mV/A	5mV/A



Ch2 - CWTMini50HF/3/B/1/100/2 - 10mV/A, peak current 600A (100A/div)

Source: PEM **GMW**Associates

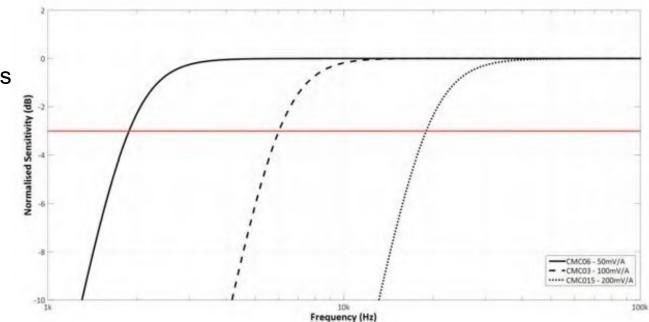
Current Probe Connections in Electric Vehicle Chargers - PEM CWT Mini50HF

GMWAssociates

PEM Current Probes with Tailored Frequency Response

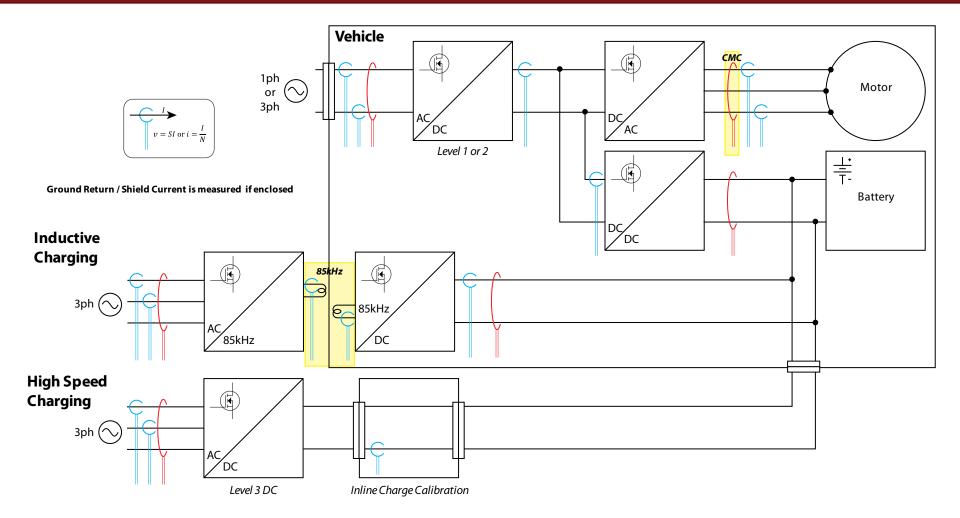
CMC Common-Mode AC Current Probe

Optimized for high S/N for the high frequency current generated by the Variable Speed Drive Voltage Spikes


Current Sensitivity (S):	200mV/A	100mV/A	50mV/A
Current Range:	±37.5A	±75A	±150A
Frequency Range (LF):	19kHz	6kHz	1.9kHz
(HF):	11MHz	13MHz	14MHz

CWT MiniHF 85kHz AC Current Probe

Optimized for 85kHz inductive power transfer measurements


20mV/A
±300A
530Hz
30MHz
±0.5%
<±1°

Current Measurement for Electric Vehicle Charger Test

Source: PEM

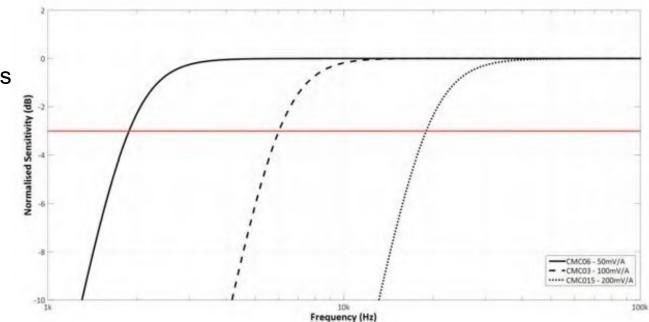
Current Probe Connections in Electric Vehicle Chargers – Tailored Frequency Response (CMC, CWT MiniHF 85kHz)

GMWAssociates

PEM Current Probes with Tailored Frequency Response

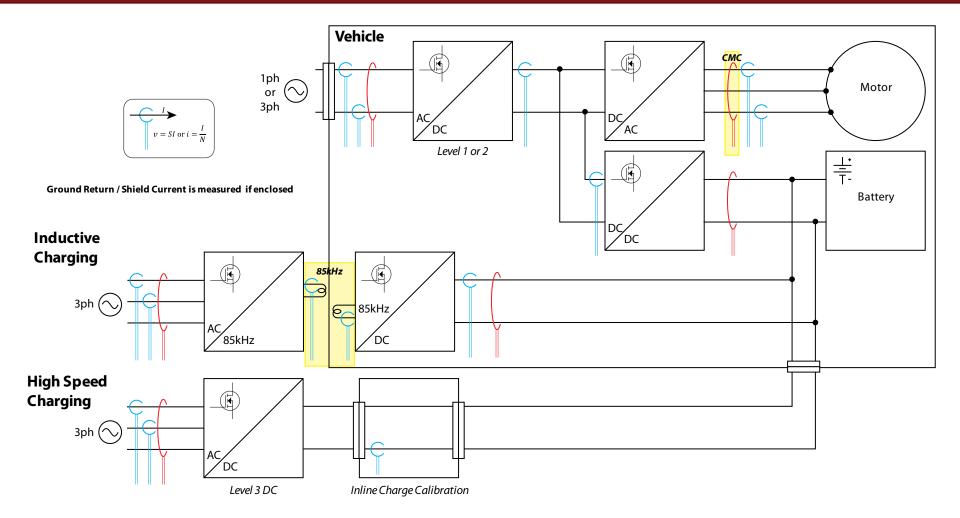
CMC Common-Mode AC Current Probe

Optimized for high S/N for the high frequency current generated by the Variable Speed Drive Voltage Spikes


Current Sensitivity (S):	200mV/A	100mV/A	50mV/A
Current Range:	±37.5A	±75A	±150A
Frequency Range (LF):	19kHz	6kHz	1.9kHz
(HF):	11MHz	13MHz	14MHz

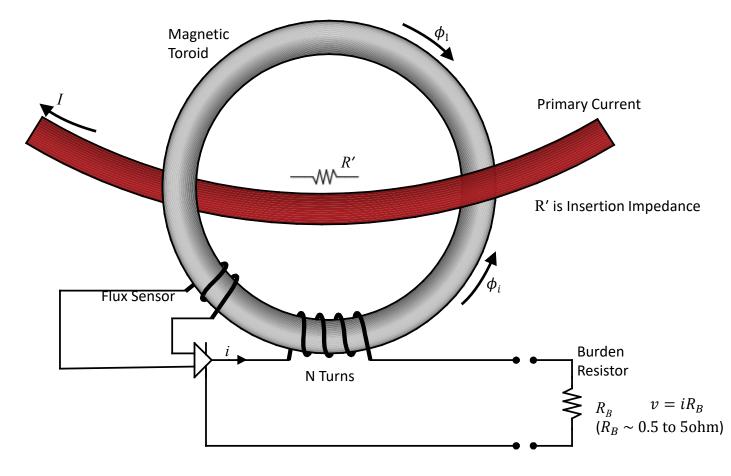
CWT MiniHF 85kHz AC Current Probe

Optimized for 85kHz inductive power transfer measurements


20mV/A
±300A
530Hz
30MHz
±0.5%
<±1°

Current Measurement for Electric Vehicle Charger Test

Source: PEM


Current Probe Connections in Electric Vehicle Chargers – Tailored Frequency Response (CMC, CWT MiniHF 85kHz)

GMWAssociates

Danisense Current Transducers

DC-AC Zero Flux, Fluxgate Current Transducers

If $\phi_i = \phi_1$ (zero flux in the magnetic toroid), Ni = I and i = I/N ($N \sim 200 \ to \ 5000$).

If there is no power lost in the Current Transducer, $I^2 R' \sim i^2 R_B$, $I^2 R' \sim \frac{I^2}{N^2} R_B$ or $R' \sim \frac{R_B}{N^2}$

For $R_B \sim 1$ ohm, $N \sim 1000$, $R' \sim 1\mu$ ohm.

For *I* ~ 1000A, *N*~1000, *Power*~1W

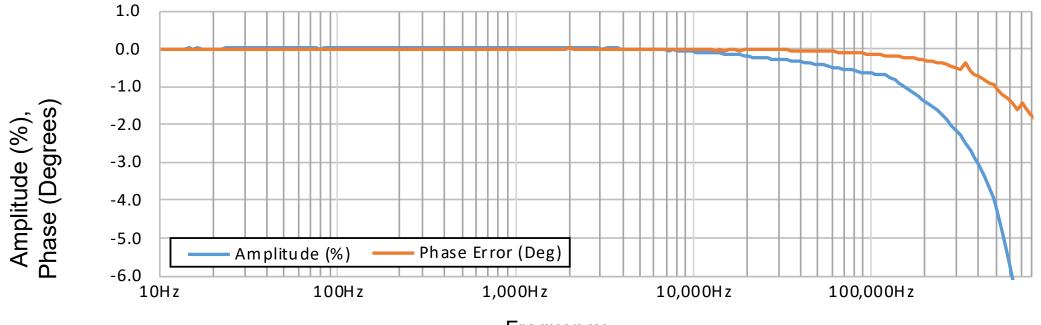
Product Range Overview

Output Type	Product Family		Primary Current (Arms)													
		50	100	200	300	400	500	600	1000	1200	2000	5000	10000	DP series	DP DS	DQ series
	DP	PCB Mount, Programmable, 12.5/25/50Arms									I.	series				
	DT															DAM/ENSE
	DS															DANIFENE PROMOCON (111
Current	DQ													DT series	DM series	
Cur	DC				· ۱											DR
	DM															series
	DL															
	DR													DW	DL	
	DS													series	series	Unpackaged
Ø	DW															
Voltage	DM														- DANI/ENSE	The second s
Š	DL													DC		
	DR													series	DSSIU Sys	stem Interface

andore

GMWAssociates

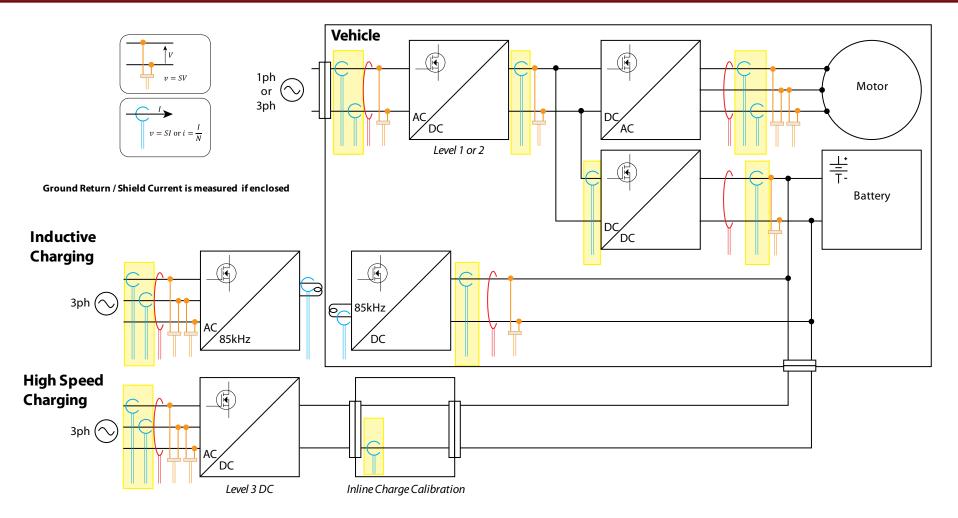
Specifications, selected models


	DS200ID	DS1200ID-CD3000
Current Ratio, N	500	1500
Current Range	±370A	±1500A
Output Signal	2mA/A	0.666mA/A
Zero Offset (equiv. primary)	< ±6mA	< ±18mA
Zero Offset Stability (equiv. primary)	< ±0.06mA/month	< ±0.15mA/month
Offset Change, Magnetic Field (equiv. primary) < ±3mA/mT ⁽¹⁾	< ±3mA/mT ⁽¹⁾
Amplitude Error, dc to 5kHz	< ±0.01%	< 0.01% ⁽²⁾
Phase Error, dc to 5kHz	< ±0.1 degree	< ±0.1 degree ⁽²⁾
Calibration Winding	-	$3000 \text{ turns}^{(2)} \\ 500mA \cdot 3000t = 1500A \cdot t$
Case Type	Al (ES Shield)	Al (ES Shield)
Aperture	27.6mm (~1.1")	45mm (~1.77")

(1) A current of 500A generates a field of 1mT at a radius of 0.1m (~4").

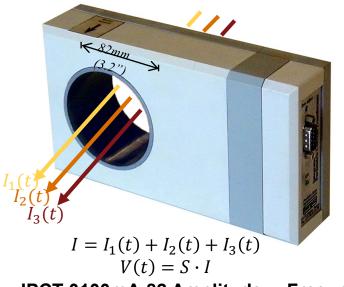
(2) Calibration Winding Option limits AC operation to 1kHz

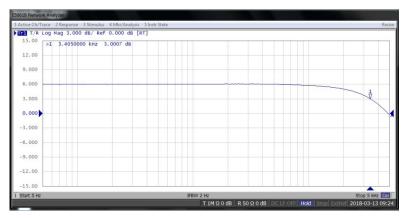
DS200ID, Amplitude and Phase



Frequency

- Excellent amplitude and phase response to 10kHz
- No resonant behavior in amplitude or phase response at high frequency

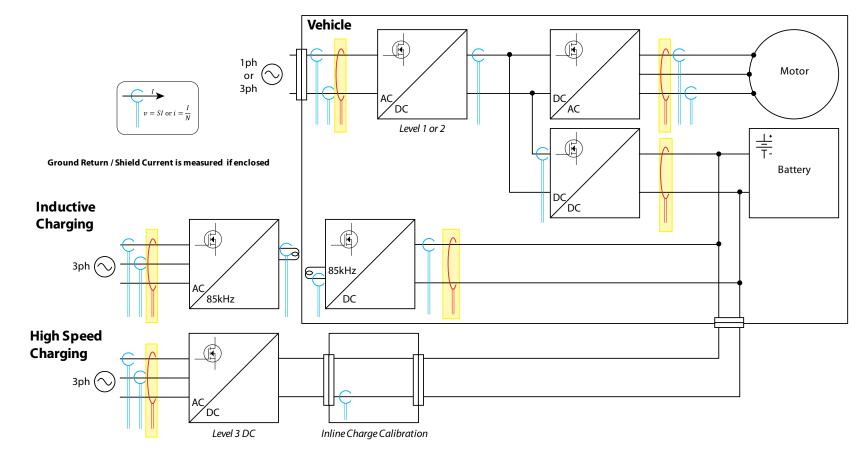

Current and Voltage Probe Connections in Electric Vehicle Chargers – Danisense Current Transducers


GMWAssociates

Bergoz IPCT DC-AC High Resolution Current Transducer

Bergoz IPCT – DC-AC High Resolution Current Transducer

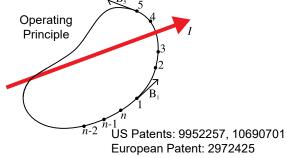
IPCT-0100mA-82 Amplitude v. Frequency



	IPCT	LP-IPCT	
Current Range	±1mA to ±20A	±1mA to ±2A	
Output Signal, $V(t)$	±10V	±10V	
Zero Offset	Adjustable, 20 turn pot.	Adjustable, 20 turn pot.	
Frequency Response	DC to 2.5kHz (-3dB)	DC to 1kHz (-3dB)	
Noise (equiv. primary)	1μArms/√ <i>Hz</i> to 50μArms/√ <i>Hz</i>	_	
Resolution	30µA at ±2A Full-Scale	3μA at ±2A Full-Scale	
Recovery after overload (1000x)	< 10ms	< 20ms	
Aperture	82mm (3.2")	30mm (1.18")	
Mass	0.5kg	0.2kg	
Dimensions	200 x 112 x 50mm	105 x 52 x 55mm	

(1) A current of 500A generates a field of 1mT at a radius of 0.1m (~4").

Current Probe Connections in Electric Vehicle Chargers – Bergoz IPCT


GMW CPC

Clip-on DC-AC Coreless Current Probes

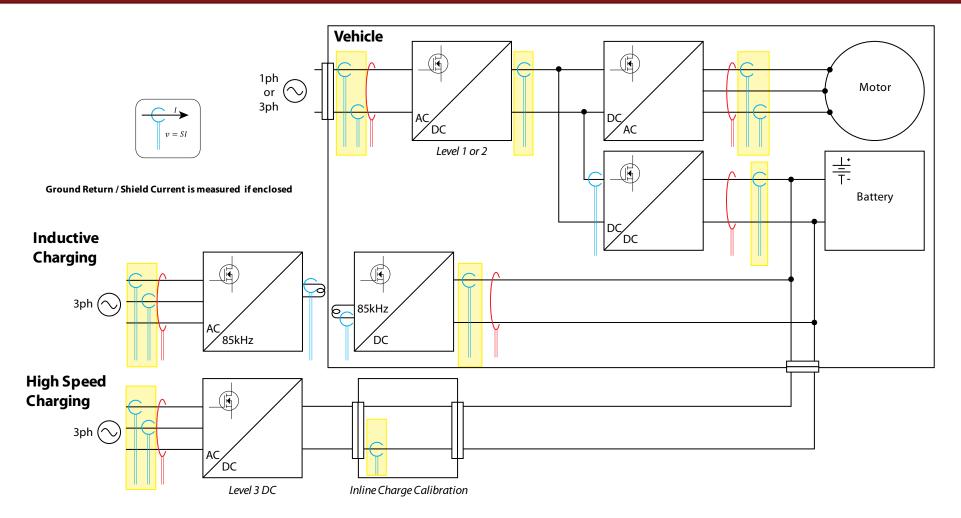
GMW CPC – Clip-on DC-AC Coreless Current Probes

For System diagnostics and long-term monitoring, Current Probes with no magnetic core.

No hysteresis, no damage from primary current overload with recovery to linear operation within 10 μ S of primary current within range. The CPC can be used to monitor the "low current" recovery after a high current overload.

CPC-xxxx-27

CPCO – Current Probe, Clamp-on Probe based on same technology and design with larger aperture, in use at an electrochemical plant.


CPC – small size enables installation in difficult locations.

Current Sensitivity	8mV/A to 1mV/A			
Current Range	±250A to ±2000A			
Frequency Range	dc to 75kHz (-3dB)			
Amplitude Error	< ±1%			
Output Change, Magnetic Field	< 0.2% of range for 40mT ⁽¹⁾			
Response Time	< 2µs			
Insertion Impedance	< 1pH			
Operating Temperature	-40°C to +100°C			
Moisture Resistance	Sealed, NEMA 5			
Aperture	27mm (1.06")			
Mass	< 30g (1 oz)			
Power Supply	3.5V to 5.5V, <85mA, USB Port			

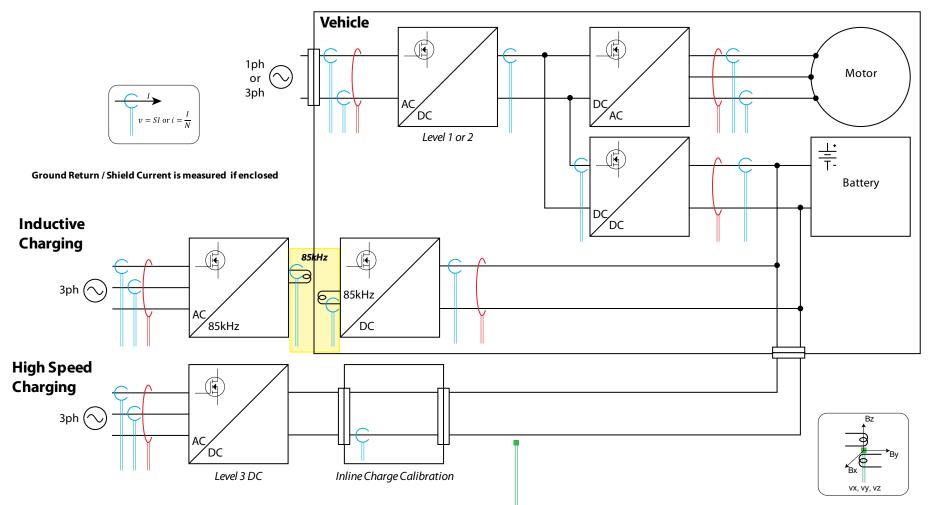
(1) A current of 10kA generates a field of 40mT at a radius of 0.05m (~2").

Current Probe Connections in Electric Vehicle Chargers – GMW CPC DC-AC Current Probes


GMWAssociates

Senis 3DACMT

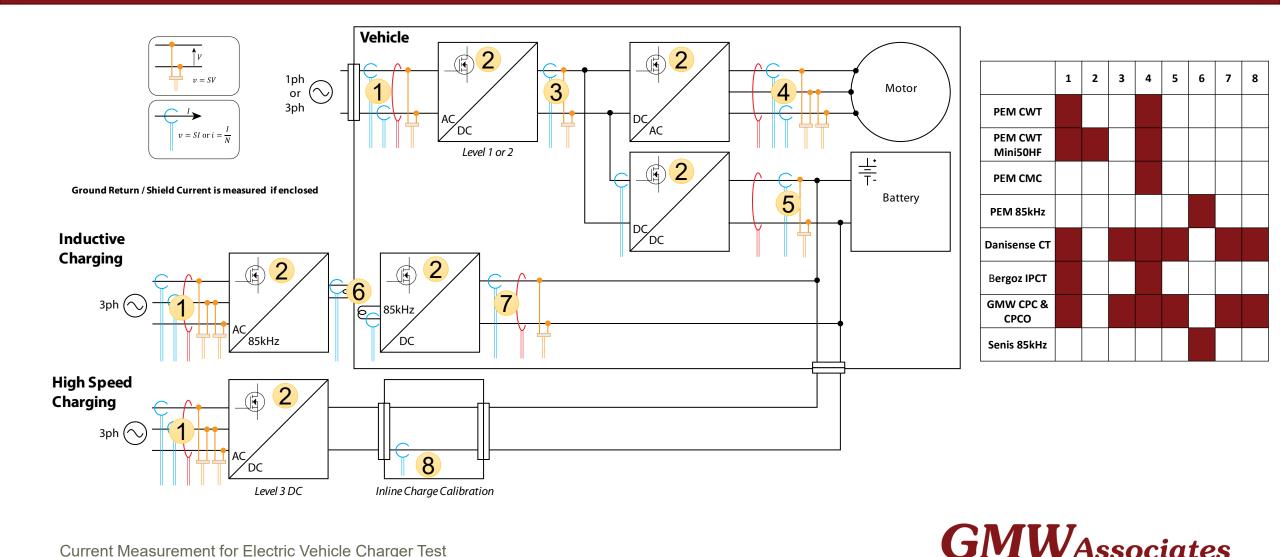
Three-Component AC Magnetic Field Transducer


Senis 3DACMT – Three-Component AC Magnetic Field Transducer

Small size enables field mapping between coils. High resolution for fringe field mapping.

GMWAssociates

Field Measurement Points in Electric Vehicle Chargers – Senis Magnetic Field Transducer



GMWAssociates

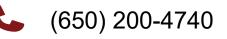
Measurement Points

Selection Guide

Field Measurement Points in Electric Vehicle Chargers – **Selection Guide**

Thank You!

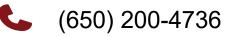
Brian Richter


President

- brian@gmw.com
- (650) 200-4734

Sandro Renteria

www.gmw.com


Calibration Lab Manager sandro@gmw.com

Ben Hartzell

Senior Vice President, Marketing

ben@gmw.com \searrow

lan Walker

Senior Applications Engineer

ian@gmw.com \searrow

(650) 240-1134

